Introducción
Los espacios vectoriales son conjuntos con una estructura adicional, al saber, sus elementos se pueden sumar y multiplicar por escalares del campo dado, conviene utilizar funciones que preserven dicha estructura. Estas funciones se llamaran transformaciones lineales.
Se denomina transformación lineal a toda función cuyo dominio e imagen sean espacios vectoriales y se cumplan las condiciones necesarias. Las transformaciones lineales ocurren con mucha frecuencia en el álgebra lineal y en otras ramas de las matemáticas, tienen una gran variedad de aplicaciones importantes. Las transformaciones lineales tienen gran aplicación en la física, la ingeniería y en diversas ramas de la matemática.
Estudiaremos las propiedades de las transformaciones lineales, sus diferentes tipos, así como la imagen, el núcleo, y como se desarrolla en las ecuaciones lineales.
Podemos dar la siguiente definicion

Ejemplo 1. A partir de la definición, analicemos si es lineal la siguiente transformación:
T: R2 ® R3 / " x Î R2 : T ((x1, x2)) = (x1 + x2, x1 - x2, x2)
Se deben verificar las dos condiciones de la definición:
a) ¿ " x, y Î R2 : T (x + y) = T (x) + T (y) ?
x = (x1, x2)
y = (y1, y2)
x + y = (x1 + y1, x2 + y2)
T (x + y) = T (x1 + y1, x2 + y2) = (x1 + y1 + x2 + y2, x1 + y1 - x2 - y2, x2 + y2) =
= (x1 + x2, x1 - x2, x2) + (y1 + y2, y1 - y2, y2) = T (x) + T (y)
b) ¿ " x Î R2, " k Î R : T (k x) = k T (x) ?
T (k x) = T (k (x1, x2)) = T (k x1, k x2) = (k x1 + k x2, k x1 - k x2, k x2) =
= k (x1 + x2, x1 - x2, x2) =
= k T (x)
Se verifican las dos condiciones de la definición, entonces la transformación es lineal.
T: R2 ® R3 / " x Î R2 : T ((x1, x2)) = (x1 + x2, x1 - x2, x2)
Se deben verificar las dos condiciones de la definición:
a) ¿ " x, y Î R2 : T (x + y) = T (x) + T (y) ?
x = (x1, x2)
y = (y1, y2)
x + y = (x1 + y1, x2 + y2)
T (x + y) = T (x1 + y1, x2 + y2) = (x1 + y1 + x2 + y2, x1 + y1 - x2 - y2, x2 + y2) =
= (x1 + x2, x1 - x2, x2) + (y1 + y2, y1 - y2, y2) = T (x) + T (y)
b) ¿ " x Î R2, " k Î R : T (k x) = k T (x) ?
T (k x) = T (k (x1, x2)) = T (k x1, k x2) = (k x1 + k x2, k x1 - k x2, k x2) =
= k (x1 + x2, x1 - x2, x2) =
= k T (x)
Se verifican las dos condiciones de la definición, entonces la transformación es lineal.
Se deben verificar las dos condiciones de la definición:
a) ¿ " x, y Î R2 : T (x + y) = T (x) + T (y) ?
x = (x1, x2)
y = (y1, y2)
x + y = (x1 + y1, x2 + y2)
T (x) + T (y) = (x2, x1 + 2) + (y2, y1 + 2) = (x2 + y2, x1 + y1 + 4)
T (x + y) = T (x1 + y1, x2 + y2) = (x2 + y2, x1 + y1 + 2) ¹ T (x) + T (y)
No se verifica esta condición, entonces la transformación no es lineal.
El nucleo
Propiedades
ü Para toda transformación lineal T: V ® W, T (-x) = -T (x)
ü Para toda transformación lineal T: V ® W, T (0) = 0 ( El que aparece en la izquierda es el vector nulo de V, mientras que el que aparece en el lado derecho es el vector nulo de W. Se puede escribir también T (0V) = 0W )
üSea V un espacio vectorial de dimensión finita, W un espacio vectorial, {v1,..., vn} una base de V, y {z1,..., zn} un conjunto cualquiera de vectores de W. Entonces existe una única transformación lineal T: V ® W tal que T (vi) = zi (1 ≤ i ≤ n)
ü Para toda transformación lineal T: V ® W, T (0) = 0 ( El que aparece en la izquierda es el vector nulo de V, mientras que el que aparece en el lado derecho es el vector nulo de W. Se puede escribir también T (0V) = 0W )
üSea V un espacio vectorial de dimensión finita, W un espacio vectorial, {v1,..., vn} una base de V, y {z1,..., zn} un conjunto cualquiera de vectores de W. Entonces existe una única transformación lineal T: V ® W tal que T (vi) = zi (1 ≤ i ≤ n)